

Nuclear Perspectives in Latin America

- Outline
 - Brazil
 - Argentina
 - Mexico
 - Chile
 - Other Countries
 - Perspectives

Brazil Nuclear Energy Program

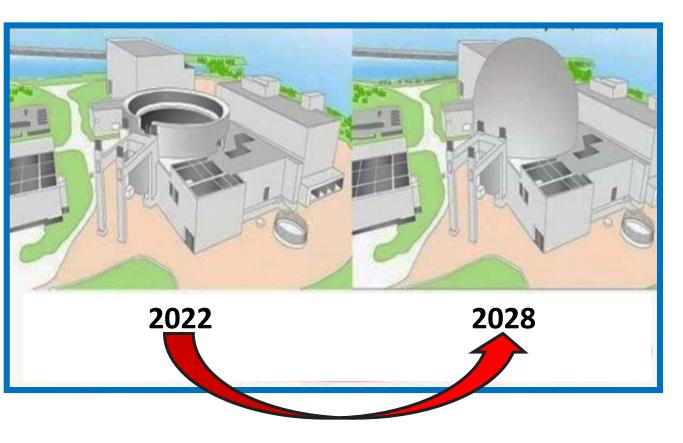
- Next steps: PDE 2031 and PNE 2050
- PDE 2031 Program for 10 years
- PNE 2050 Program for 30 years
- New changes in the Nuclear Regulation
 - A ENBPar
 - The separation of CNEN ANSN National Authority for Nuclear Security
 - Changes in the Future Constitutional Amendment
 - Resumption of Angra 3
 - Acceleration of the critical line of the work

National Energy Plan — PDE 2031 & PNE 2050

Nuclear energy in Brazil will involve investments of US\$ 27 billion

The government plans to achieve an installed nuclear power capacity of between 8 and 10 Gigawatts in the next 30 years The PDE 2031 has the following energy policy guideline:

• Inclusion of a new 1,000 MW Nuclear plant in the region

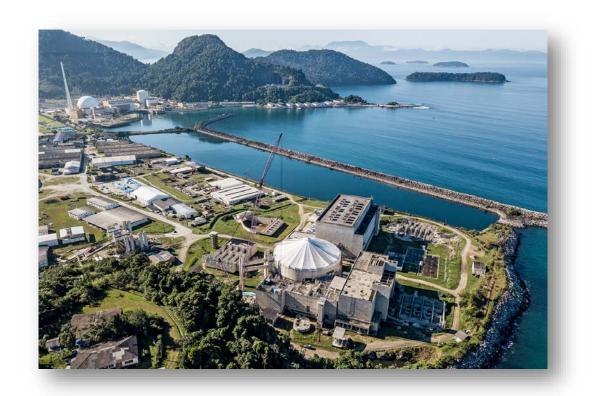


Brazil's Short term PROJECTS

- ✓ Construction of Angra III
 - ✓ Acceleration of the critical path for the construction of Angra III
 - ✓ EPC Contract
- **✓ EPC Contract**
- ✓ Angra III commercial operation 2028
- ✓ Life span of Angra I 2024 (20 years) 2045
- ✓ Life span of Angra il 2040 (20 years) 2060

Finishing Angra 3

- Eletronuclear and its parent company ENBPar will comply with the Critical Line Acceleration Program
- Part of Finalizing with EPC and Final Equipment and System Aquisition
- investment plan for the period 2022-2028 – US\$ 3 billions
- designed to preserve the schedule of works.
- The goal is:
 - Start EPC February 2024
 - COD June 2028


Angra I and II NPP

Status of Angra 3 Construction

- √ 67.26% of civil works have already been carried out
- ✓ The overall physical progress of the enterprise, considering all other disciplines involved, is 65.29%
- ✓ The investment already made is around US\$
 1.6 billion
- ✓ Estimated resources for completion are approximately US\$ 3.013 billion funding by ENBPar

Navy Program – Nuclear Defense Submarine

Schematic Plant

Gerador Condensador Turbina da de Vapor Pressurizador Painel da Propulsão Propulsão Turbina Reator Auxiliar Gerador Bomba de de Propulsão Bomba de Bomba de Circulação Bomba de Resfriamento Alimentação Extração Auxiliar

Main Topics

- Huge human resource formation
- Spin off of Technology
- Depend on the government funds
- Planning for 2032
- More than 2000 staff

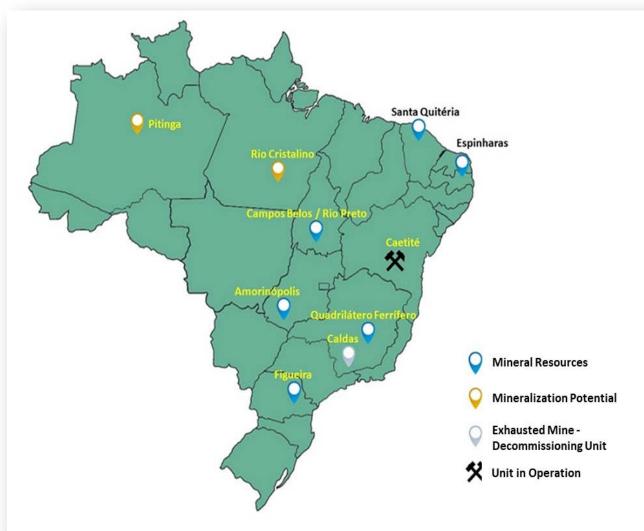
[installed nuclear power capacity between 8 and 10 Gigawatts over the next 30 years]

implementation of Small Modular Reactors - SMR

Localization Study of New Nuclear Sites

AP1000 Project

(Source: Westinghouse)


A Cutaway of the Reactor Building SMR design

(Source: NuScale)

A cutaway of the PRISM design

Projects for Uranium Production

- Brazilian mineral resources evolved from 9,400 ton (1975) to the current amount of 244,788 ton of U3O8
- can be expanded with new research and mineral research since only 33% of the national territory was researched
- The northern region of the country has the potential to house more than 300,000 tons of Uranium

н

Small Modular Reactors

- Brazil has an advanced nuclear technological development;
- Help to mastery of the nuclear fuel cycle;
- Possibility to leverage the nuclear production chain;
- Leveraging the technological development of other Programs (Medicine, Nuclear Application, Navy, etc.);
- Multiple application potential
 - Remote and off-grid region
 - Application in National Integrated System
 - Desalination
 - Hydrogen Production
 - Industrial Purposes
 - Green hydrogen production & synthetic fuel
- Other applications

Argentina Nuclear Energy Program

- Development of nuclear technology and its fuel cycle;
- Basic and applied research;
- Nuclear technology in medical applications, food irradiation and environmental protection;
- INSC 02-202 Human resources training.

Associated Industries and Institutions

CNUAR

1950

INVAP S.E. Ingeniería y Servicios 1982

Combustibles Nucleares Argentinos S.A.

Combustibles Nucleares 1986

Fabricación de Aleaciones Especiales S.A.

Tubos de zircaloy y aleaciones especiales

1989

Empresa Neuquina de Servicios de Ingeniería S.E. Agua pesada 1997

Nucleoeléctrica Argentina S.A.

1994

Operador centrales nucleares

Dioxitek S.A.

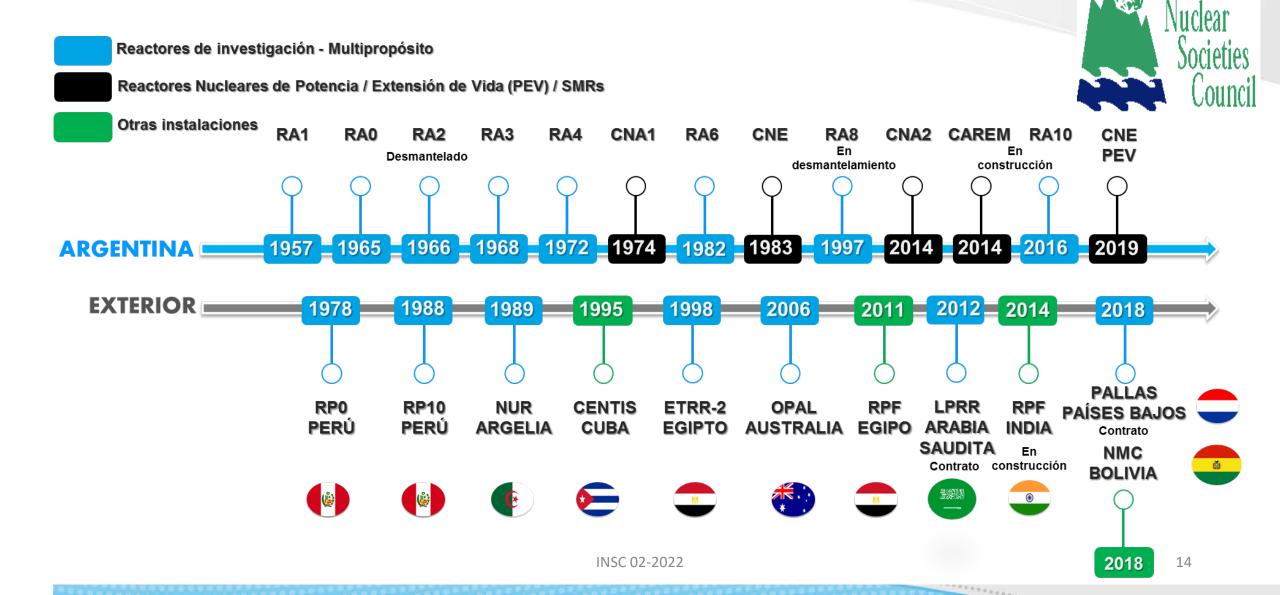
Dióxido de Uranio, Fuentes selladas Co-60

Directores por la CNE en el Directorio de la empresa SUDACIA S.A.: 64.43%

CNEA: 35.57%

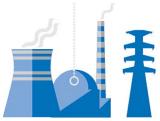
Fusión entre CONUAR-FAE (Abril, 2019). Provincia de Neuquén: 51% CNEA: 49% Secretaria Gobierno de Energía: 79%

CNEA: 20%

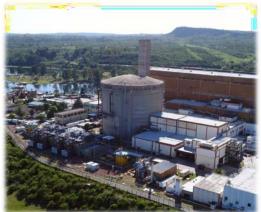

EBISA.: 1%

Secretaria Gobierno de Energía: 51%

CNEA: 48%

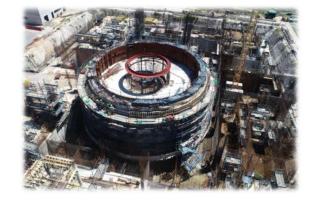

Nuclear Mendoza S.E.: 1%

Argentian Relevant Nuclear Projects


The ARGENTINE REPUBLIC designs, builds and operates nuclear power plants, while facing a process of construction of a Small Modular Reactor (SMR) of entirely national design and develops negotiations with the People's Republic of China for the construction of a Nuclear Power Plant of HPR-1000 technology.

3 NUCLEAR POWER PLANTS IN OPERATION TOTAL INSTALLED CAPACITY 1763 MWe

ATUCHA 1 First nuclear power plant in Latin America (362 Mwe) ATUCHA 2 Commissioning in 2014 (745 Mwe)



EMBALSE En 2019 culmiRESERVOIR

In 2019, the life extension tasks were completed, allowing it to operate for 30 more years (656 Mwe)

1 CAREM NUCLEAR POWER PLANT UNDER CONSTRUCTION (SMR)

1 NUCLEAR POWER **PLANT UNDER NEGOTIATION**

ARGENTINA MAIN ON GOING PROJECTS

CAREM 25

Uranium enrichment

RA-10

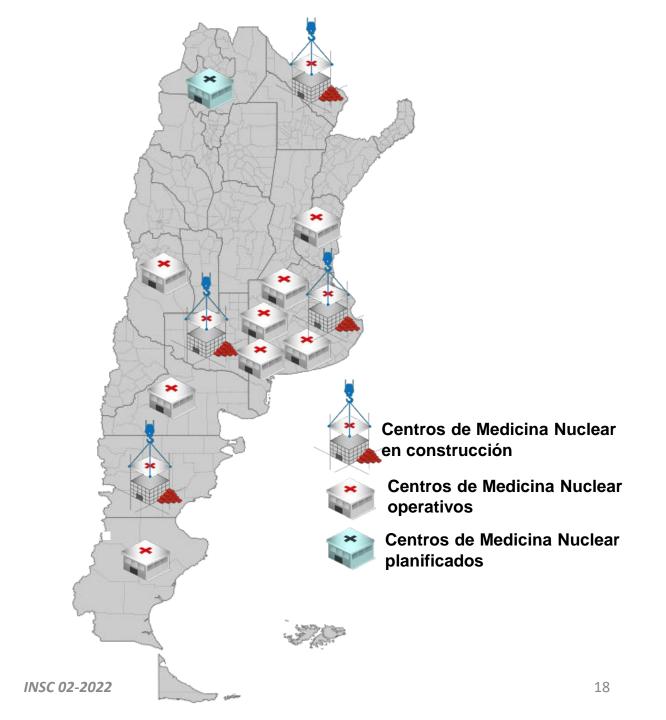
Environmental

Futura Central Nuclear

Nuclear

CAREN 25 and Multipurpouse RA 10

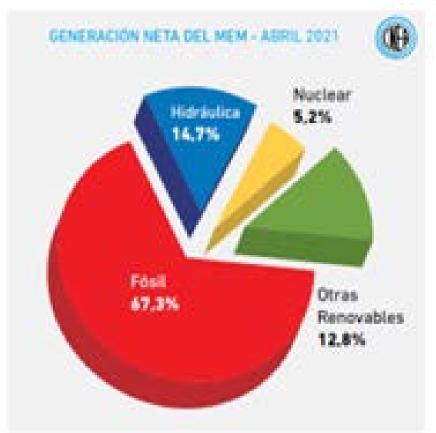
- Main features
- Tipo PWR
- Electrical power : 32 MW
- Heating capacity: 100 MW
- Integrated Primary System
- Natural circulation
- Autopresurizado
- Fuel: Enriched UO2 (3.1 and 1.8%)
- Passive safety systems
- 18-month operating cycle

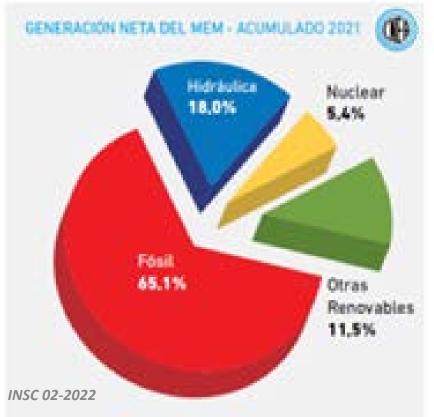


NUCLEAR MEDICINE

National Atomic Energy Commission (CNEA) pays special attention to Health field, strongly supporting scientific development linked to nuclear medicine.

Synergies are generated between the production of radioisotopes, R+D, infrastructure and the staff of experts and technicians.


The CNEA is responsible for the coordination of Nuclear Medicine and Radiotherapy Centers, updating the equipment of existing ones – associated with the National Health System – and leading the construction and acquisition of new centers throughout the country.



Energy Matrix

GENERACIÓN ENERGÉTICA ARGENTINA

Mexico Nuclear Energy Program

- In Mexico, the Laguna Verde Nuclear Power Plant (CNLV) has been operating since 1990 (Unit 1) and since 1995 (Unit 2). These reactors are boiling water type (BWR) manufactured by General Electric.
- Both Units have gone through two processes of increasing power, narrow (5%) and extended (120%). In June 2018, the National Commission for Nuclear Safety and Safeguards (CNSNS) granted the license to operate up to 120% of the originally licensed power (1931Mwt).
- In June 2020, Unit 1 was granted the renewal of its license to operate for 30 more years. The license renewal of Unit 2 is in process.

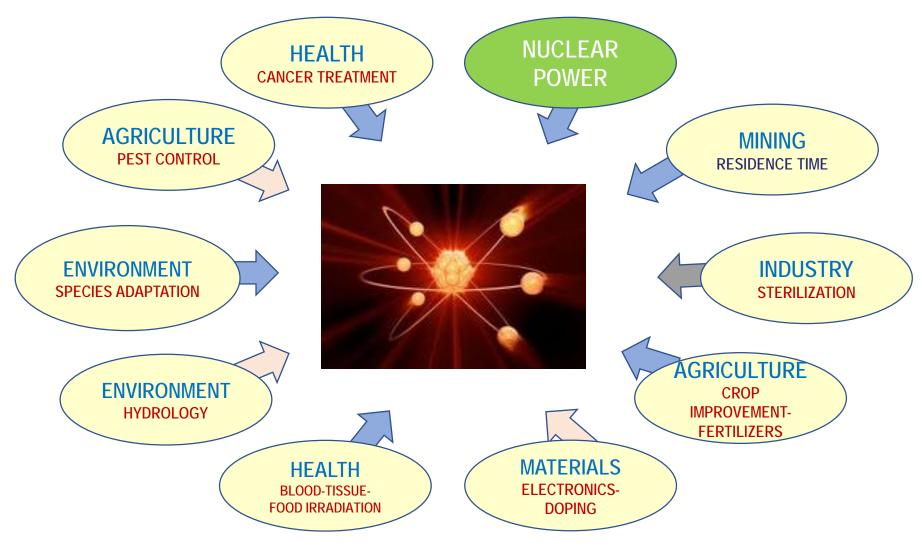
INSC 02-2022 20

LAW FOR THE USE OF RENEWABLE ENERGIES AND THE FINANCING OF THE ENERGY TRANSITION

• Second transitory: increase the percentage of nonfossil energies in the portfolio of primary energy sources for electricity generation by at least 35% by 2024, 40% by 2035 and 50% by 2050.

INSC 02-2022 21

System


(PRODESEN) 2022-2036 Program for the Development of the

National Electric

- It is the instrument that details the annual planning of the National Electric System with a fifteen-year horizon and that specifies the national energy policy on electricity.
- In light of this document, two projects have been contemplated that would expand the installed nuclear capacity in the country:
- Consider incorporating into the national electricity system an SMR with the ability to desalinate seawater
- Add two more units in Laguna Verde (Unit 3 and Unit 4)

CHILE Nuclear Energy Program Nuclear applications

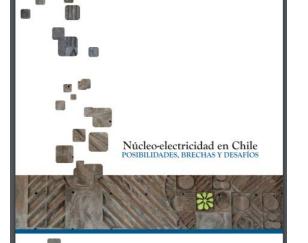
Considering Nuclear Power.....

Final Report-2010

First Report-2008

GRUPO DE TRABAJO EN NÚCLEO-ELECTRICIDAD

Septiembre 2007


Nuclear energy is not a disposable option and could contribute to the security of electricity supply

ISSUES-Self Evaluation

National Studies

- State and Private Sector roles
 N. Populatory Franciscopy
- N-Regulatory Framework
 Nuclear Fuel Cycle Options
 Impacts and Risks of Core-Electric
- Generation
 Natural Risks
- Core Regulation Electrical
- Adequacy of the Legal Framework
- Public opinion-perception
- Public opinion-communication

The nuclear option for electricity generation is experiencing a renaissance in the world. The projected evolution of the national energy sector indicates that Chile -in the most probable scenarios- will require nuclear energy at mid-2020s, to support meeting its economic efficiency targets, security of supply and prices, as well as environmental sustainability.

INSC 02-2022 24

Renewable energy growth in Chile

Concentración solar de potencia

GW

509+

Solar fotovoltaica

GW

1180+

Eólica on-shore

GW

Hidroeléctrica de pasada

GW

1.800+ GW

de potencial energético renovable que equivalen a 70 veces la demanda de Chile

Summary status for States in Latin America

Tlatelolco, CSA and AP in force	Tlatelolco, CSA, w/o AP in force	Tlatelolco, CSA with Mod. SQP and AP in force	Tlatelolco, CSA with Mod. SQP, w/o AP in force	Tlatelolco, CSA with SQP and AP in force	Tlatelolco, CSA with SQP, w/o AP in force
CHILE	ARGENTINA	ECUADOR	BAHAMAS		BELIZE
COLOMBIA	BRAZIL	NICARAGUA			BOLIVIA
CUBA	VENEZUELA	DOMINICAN REPUBLIC			GRENADA
JAMAICA		COSTA RICA			GUYANA
PERU		GUATEMALA			ST LUCIA
URUGUAY		PANAMA			ST VINCENT & THE GRENADINES
MEXICO		ANTIGUA & BARBUDA			SURINAME
		HONDURAS			TRINIDAD & TOBAGO
		DOMINICA			BARBADOS
		EL SALVADOR			
		PARAGUAY			
		HAITI			
		ST KITTS & NEVIS			

Conclusions for Nuclear in LATAM

- Argentina, Brazil and Mexico will continue to increase the Nucler Energy option;
- Goals to increase the Clean Energy will help;
- The renewables, Solar and Wind, are Strong Competitors;
- The Matrix Mix needs balance with intermitent and base load energy;
- SMR can play a important role and change for some countries;
 - Create Nuclear Knowledge
- Nuclear Medicine and Applications are expected to have a Strong increase;
- Nuclear Culture and Human Resources should be looked thru different approaches.

INSC 02-2022 27

Nuclear Societies in Latin America

- Brazil ABEN / ABDAN
- Argentina AATN
- Mexico SNM
- Chile CHNS
- Other Countries Peru, Cuba, Colombia
- Latin America LAS/ANS WIN IYNC

Thank you

Orpet Peixoto
Vice-Chair INSC
orpet@uol.com.br