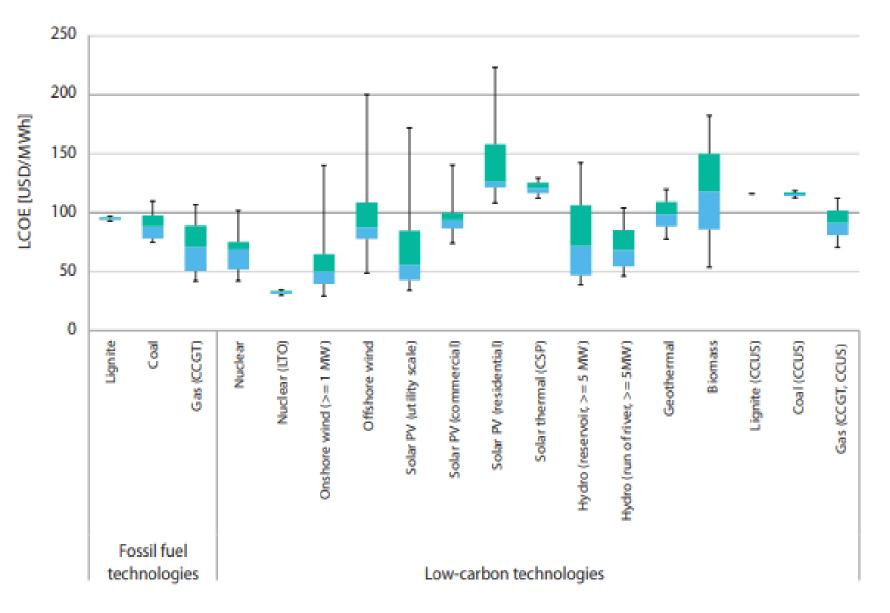
ENS YG

Role of nuclear in European Net Zero Perspective

INSC WORKSHOP 2024 ENS Presentation

FUTURE: NUCLEAR TOO EXPENSIVE?


- Case of Germany 2022: 150 GWe VRE - 250 TWh/550 - 385gr CO2/kWh 2005 2025: 500 Billion Subsidies VRE (20 years lifetime) + 150 Billions for HV Grid German Court of Auditor + 450 Billion for HV Grid Total 1100 Billion
- Case of France 2022
 60 GWe Nuclear 300 TWh/450 85gr CO2/kWh
 LTO programme (+20 years lifetime): 50 Billion
- … ??? New Build say 10 Billion for 1500 Mwe
 150 GWe 1000 Billion (1000 TWh/y 80 years lifetime)

#EUSEW2024

Levelized Cost of Electricity LCOE IEA NEA PCGE 2020

Note: Values at 7% discount rate. Box plots indicate maximum, median and minimum values. The boxes indicate the central 50% of values, i.e. the second and the third quartile.

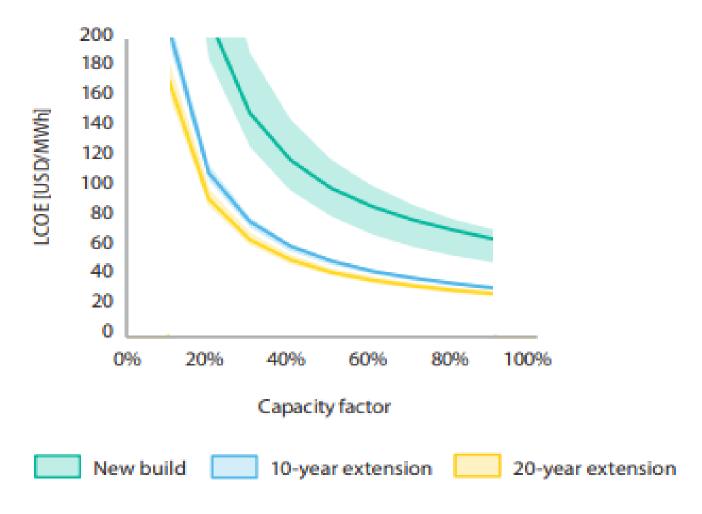
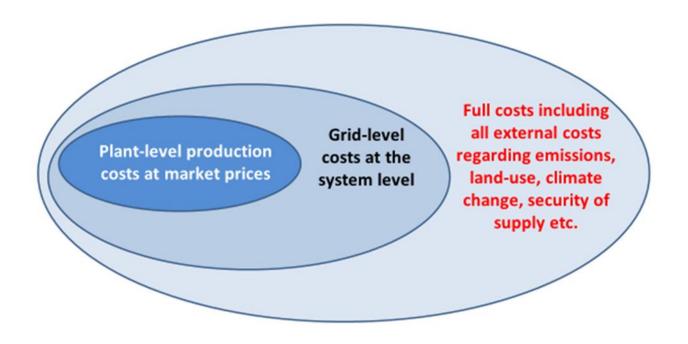

https://www.oecd-nea.org/jcms/pl 60310/long-term-operation-of-nuclear-powerplants-and-decarbonisation-strategies

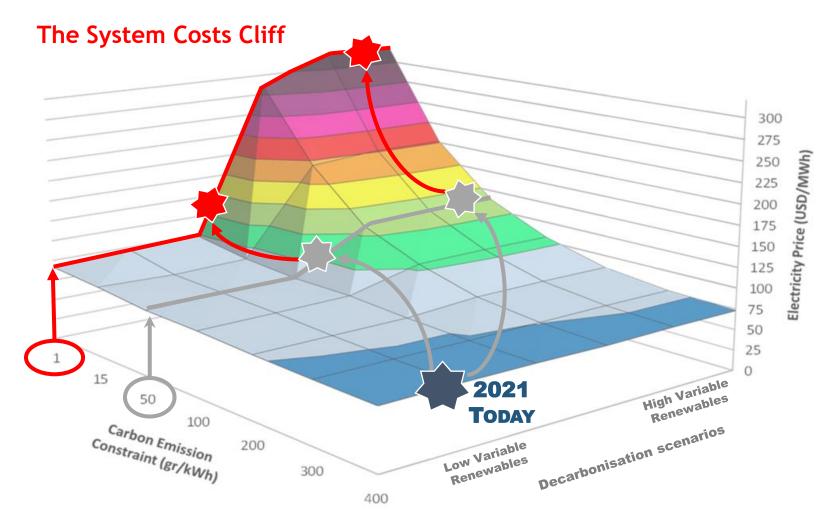
Table 6.1: LTO LCOE values for LWRs as a function of the LTO period, discount rate, overnight costs and the capacity factor

Overnight LTO investment costs (USD/kWe)	LWR LTO LCOE (USD/MWh)					
	LTO period = 10 years			LTO period = 20 years		
	Discount rate			Discount rate		
	3%	7%	10%	3%	7%	10%
	Capacity factor = 85%					
450	29.4	31.2	32.6	26.4	28.6	29.7
700	33.4	36.1	38.3	28.7	31.4	33.8
950	37.4	41.1	44.1	31.0	34.7	38.0
	Capacity factor = 75%					
450	31.9	33.9	35.5	28.4	30.5	32.2
700	36.5	39.5	42.0	31.0	34.2	36.9
950	41.0	45.1	48.5	33.6	37.9	41.6
Min	29.4			26.4		
Max	48.5			41.6		

Note: These values have been computed assuming a refurbishment period of two years, fixed O&M costs of USD 85/kWe, variable O&M costs of USD 1.5/kWe, front-end fuel costs of USD 7/MWh and back-end fuel costs of USD 2.33/MWh, consistent with the values for new build projects considered in IEA/NEA (2020). The overnight LTO investment cost includes other plant enhancements beyond LTO and 5% of contingencies. Decommissioning costs are not included as they have largely depreciated during the initial design lifetime.


Levelized Cost of Electricity LCOE IEA NEA PCGE 2020

Note: Values at 7% discount rate. Lines indicate median values, areas the 50% central region.


BEYOND LCOE... Full Cost Approach

Economics:
Beyond
LCOE...

Working Party for Nuclear Energy Economics (WPNE), OECD NEA, Paris, 28 May 2015

Charting a Path to Net-Zero Electricity

Source: NEA

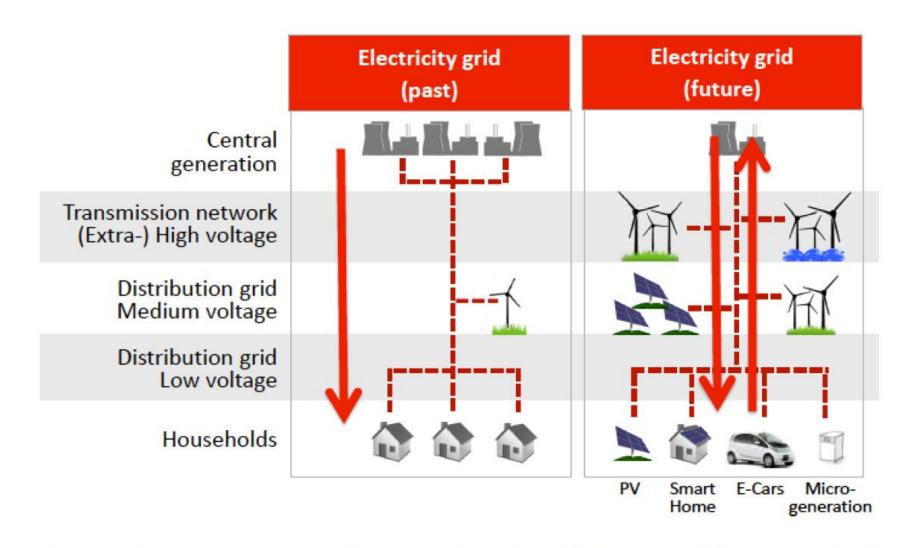
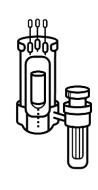


Fig. 1.3. Changing Structure of the Electricity Grid [J. Specht, E.ON, August 2014]

EU Energy Policy:


2019 - 2023... UVdL and Timmermans Commission

- Increased financing means (Covid): Budget 1 Trillion + Next Generation EU (Recovery Package) 750 Million Euros: Financing Instruments for Energy Transition (nuclear excluded)
- EU Green Deal: Fit-For-55 Package... : by 2030: 55% CO2; 42.5% RES; 12% EE vs projection in 2020
- Taxonomy for Sustainable Financing... 1st DA approved end 2021 and Complementary DA for nuclear and gas approved in 2022 – for the transition – political deal FR DE... not ideal...
- Gas crisis supply and prices REPowerEU 300 Billions more financing... more RES and nuclear excluded...
- Draft proposal EC for the Reform of the E-Market
- Draft NZIA Net Zero Industry Act USA IRA Inflation reduction Act...
 Not new money- reshuffling existing tools to boost European strategic independence by supporting investments in industrial sectors

The Full Potential of Nuclear Energy to Contribute to Emissions Reductions

Long Term Operation

Large Gen-III Reactors Small Modular Reactors Non-Electrical applications

Complementary nuclear technologies and applications