Role of the Nuclear in Korean Energy Mix and Expected Roles in Net-Zero

September 18, 2024

Bum-Jin CHUNG Kyung Hee University, KOREA

[2024 INSC Workshop] Nuclear Contribution to achieving Net-Zero, IAEA M0E 07, Sep. 18, 2024

Energy Imports of Korea

- Korea lacks natural resources including renewable resources
 - imports 95% of energy
 - corresponds to 25% national import
 - corresponds to the profits from semiconductor and auto exports

- Annual Energy Imports (billion\$)
 - 2014: 143.6
 - 2015: 102.7
 - 2016: 80.9
 - 2017: 109.5
 - 2022: 217.2
 - 2023: 170.3

Breakdown (%) (2015, 2019) - Oil: 73.1 72.0 - LNG: 18.8 16.3 - Coal: 9.9 11.2

Nuclear Power Plants in Korea

Korean Nuclear Energy at a Glance

1958

Enactment of Atomic Energy Act

Construction of The first Research **Reactor, TRIGA** Mark II

1970

Establishment of Office of Atomic **Energy & Atomic Energy Research** Institute

1959

1980

Establishment of **Localization** Plan ('84)

1990

Technology Self-Reliance Development of OPR1000

2000

Advanced Reactor Development of APR1400 and **SMART**

2011

Establishment of **Nuclear Safety** and Security Commission (NSSC)

2024

Preferred

Czech's

Negotiator for

Dukovany 5&6

2009

Won contracts for a JRTR in Jordan, and 4 APR1400 in the UAE (Successful construction)

0 2012

Acquired Standard Design Approval for **SMART**

Korean Nuclear Power Plant Export

- UAE Export 2009 (4 Barakah units)
- Economic competitiveness

 Table 8.2: Construction costs of recent FOAK Generation III/III+ projects

Туре	Country	Unit	Construction start	Initial announced construction time	Ex-post construction time	Power (MWe)	Initial announced budget (USD/kWe)	Actual construction cost (USD/kWe)
AP 1000	China	Sanmen 1, 2	2009	5	9	2 x 1 000	2 044	3 154
	United States	Vogtle 3, 4	2013	4	8/9*	2 x 1 117	4 300	8 600
APR 1400	Korea	Shin Kori 3, 4	2008	5	8/10	2 x 1 340	1 828	2 410
EPR	Finland	Olkiluoto 3	2005	5	16*	1 x 1 630	2 020	>5 723
	France	Flamanville 3	2007	5	15*	1 x 1 600	1 886	8 620
	China	Taishan 1, 2	2009	4.5	9	2 x 1 660	1 960	3 222
VVER 1200	Russia	Novovoro- nezh II-1 & 2	2008	4	8/10	2 x 1 114	2 244	* *
* Estimate. ** No data available.								

- EU Requirement (Sep. 26, 2017)
- NRC Design Certificate (Aug. 26, 2019)
- UAE construction record : 'In-Time' 'Within Budget'
- Preferred Negotiator for Czech's Dukovany 5&6 (APR1000)

Role of the Nuclear in Korea

Table 4.10: Levelised costs of electricity for generating plants in Korea											
	Capital costs			O&M costs			Fuel, waste	Heat	LCOE		
Technology	3%	7%	10%	3%	7%	10%	costs	credit	3%	7%	10%
	USD/MWh		USD/MWh			USD/MWh	USD/MWh	USD/MWh			
CCGT	7.03	11.29	15.04	5.55	5.55	5.55	109.24	0.00	121.82	126.08	129.82
CCGT	5.96	9.44	12.54	4.05	4.05	4.05	105.10	0.00	115.11	118.60	121.70
Coal – pulverised (PC 800)	7.54	13.70	19.34	5.31	5.31	5.31	64.81	0.00	77.66	83.83	89.46
Coal – pulverised (PC 1000)	7.47	13.53	19.17	4.80	4.80	4.80	62.03	0.00	74.30	80.36	86.00
Nuclear – ALWR	10.41	22.20	33.15	9.65	9.65	9.65	8.58	0.00	28.63	40.42	51.37
Solar PV – residential rooftop	127.69	189.06	241.31	27.86	27.61	27.45	0.00	0.00	155.56	216.67	268.76
Solar PV – commercial rooftop	100.61	148.96	190.13	21.95	21.75	21.63	0.00	0.00	122.56	170.71	211.75
Solar PV – large, ground-mounted	84.00	124.38	158.75	17.86	17.70	17.59	0.00	0.00	101.86	142.07	176.34
Onshore wind	82.78	118.58	149.77	28.86	28.86	28.86	0.00	0.00	111.64	147.45	178.63
Offshore wind	140.06	200.22	252.47	74.41	74.41	74.41	0.00	0.00	214.47	274.63	326.88

Lifecycle CO₂-equivalent emissions (g/kWh)

Independent Grid

6

[2024 INSC Workshop] Nuclear Contribution to achieving Net-Zero, IAEA M0E 07, Sep. 18, 2024

Energy Reserve (Energy Security)

- Oil: 3.5 months
- LNG : 1.5 months
- Coal: 0.5 months
- Nuclear : 18 months (+10 month)

Comparison

3 tons of coal

Nuclear Exports

• JRTR in 2009

Jordanian Research and Training Reactor

- Barakah NPPs in 2009 (Exported with WH)
- Czech Dukovany 5&6 NPPs in 2024 (Preferred Negotiator)

Global Average Temperature

[2024 INSC Workshop] Nuclear Contribution to achieving Net-Zero, IAEA M0E 07, Sep. 18, 2024

Race to Net-Zero

Department of Nuclear Engineering Kyung Hee University

Net Zero Emission (CO₂ free)

- 2019 Energy consumption by form
 - Electricity (44.8 million TOE) from nuclear, coal, oil, LNG, renewables, etc
 - Fossil fuels (186.6 million TOE) from coal, oil, LNG, etc.
 - \rightarrow Net Zero required for Fossil fuels (4 times larger than electricity) as well.
 - \rightarrow Transition to Electricity and/or Hydrogen (Carriers) required.
 - (Carbon free electricity and Carbon free hydrogen?)
- 2019 Energy consumption by sector
 - Industry (142.9 million TOE), Transportation (43 million TOE), Home (22.6 million TOE), Commercial (17.5 million TOE), Public (5.4 million TOE)
 - Almost impossible to achieve NZE without sacrificing industry and commercial sectors (70%).
- 'Carbon Free 2050' Plan of Korea
 - Unrealistic (Renewable deployment, Hydrogen import, Super-grid connection,
 - Based on Nuclear Phase-out premise
 - Cost not calculated (Tremendous)
 - \rightarrow Possible only the renewables are substituted by nuclear.

Solar resources

[2024 INSC Workshop] Nuclear Contribution to achieving Net-Zero, IAEA M0E 07, Sep. 18, 2024

11

Wind resources

[2024 INSC Workshop] Nuclear Contribution to achieving Net-Zero, IAEA M0E 07, Sep. 18, 2024

Awareness of Energy Security

- Russia's invasion of Ukraine (Feb.24, 2022)
- Gas cut-off from Russia
 - Retaliation against the Western helps to the Ukraine
 - Leaks of Nord Stream #1 and #2
 - Weaponization of gas supply
- European countries turned to the spot market
 - Europe is buying up fuel that used to go to developing countri
 - It boost other energy prices, putting international prices to new highs
- Demand increases in Europe
 - Recovering from the COVID-19 pandemic
 - Winter preparation (Gas storage to 90%)
- Insufficient supply to demand \rightarrow Energy Crisis!

Department of Nuclear Engineering

Kyung Hee University

PUBLISHED MON, SEP 25 2023-12:49 PM EDT | UPDATED TUE, SEP 26 2023-8:34 AM EDT

TECH

POLITICS

KEY

SHARE	FX	in 🗠
-------	----	------

• Microsoft is looking to hire a "principal program manager for nuclear technology." POINTS

- Specifically, Microsoft is looking to hire someone to lead the company's technical assessment for integrating small modular nuclear reactors and microreactors "to power the datacenters that the Microsoft Cloud and AI reside on," per the job posting.
- The company is looking to generate energy with nuclear fission, which is when an atom splits and releases energy as a result of that splitting.

CNBC TV	
Squawk on the Street	WATCH LIVE (>)
UP NEXT Money Movers 11	:00 am ET Listen

Ads by Google Stop seeing this ad Why this ad? ①

Department of Nuclear Engineering

Kyung Hee University

Amazon just bought a 100% nuclear-powered data center

Michelle Lewis | Mar 5 2024 - 8:06 am PT | 🗐 51 Comments

[2024 INSC Workshop] Nuclear Contribution to achieving Net-Zero, IAEA M0E 07, Sep. 18, 2024 Department of Nuclear Engineering Kyung Hee University

Amazon, Google and Microsoft signal growing interest in nuclear, geothermal power

Rising demand from artificial intelligence is forcing big technology companies to look beyond wind and solar for clean energy.

By Heather Clancy

March 25, 2024

[2024] An illustration of a data center at a Talen Energy site in Pennsylvania. Credit: Talen Energyachieving Net-Zero, IAEA MOE 07, Sep. 18, 202416

Heather Clancy VP, Editor at Large GreenBiz Group @GreenTechLady

부적절한 광고

Appearance of SMRs

< Difficulty in New Build >

- Loss of construction capability, Collapse of supply chain
- Privatization (Short term project, Operation rather than construction)
- Construction competitiveness (Labor, Construction regulation, Welfare, Localized supply, etc.)
- Image: Modularization (Construction↓ Heavy industry[↑])
- < Safety concerns >
- Safety related cost increase (ESF)
- Public acceptance

🖙 Small

- < Nuclear use expansion >
- Replacement of fossil fuels, Hydrogen generations, etc.
- Flexible operation

Applications of SMRs

Coal replacement

Heat & Steam supply

Desalination

Hydrogen generation Mine application

Islands & Outback

Kyung Hee University

SMR at Sea

<THORCON> 미국+한국

SMR for Propulsion

- Nuclear propulsion : 40 Knots
- Logistics speed $\rightarrow \rightarrow$ oubled
- No refueling
- No canal

- Existing Container ship
 - Design speed: 30 Knots
 - Operating speed : 15 Knots

(Fuel and CO₂ reduction)

Changes due to SMRs

- Heavy industry volume of NuScale (77MWe)
 - − ~ $\frac{1}{3}$ of APR1400 (Heavy industry \uparrow) (Construction \downarrow)
 - Market leadership moves from construction to heavy industry!
- Module production
 - Same, Massive production
 - \square Custom product \rightarrow Ready-made (Off the shelf items) (100% operation)
 - Module should meet the regulations of ALL NATIONS.
 - Regulatory leadership dominates.
- Heavy industry prefers SMRs to large NPPs
 - Power moves from utility to heavy industry.
- Expanded deployment of SMRs
 - \bowtie Paradigm shift (Larger \rightarrow Small)
 - Still Large NPP is better \rightarrow Solution?

SMR Foundry

- SMR Forecast
 - NuScale, X-energy, BWRX-300 etc. lead the SMR market.
 - i-SMR, SMART Uncertain
- Nuclear Regulatory Leadership of Korea
 - Skeptical
 - SMART, SFR experience
- Remaining
 - Competitive heavy industry
 - Foundry :
 - Manufacture without own design (TSMC)
 - Design capability

SMR Development

- Traditional NPP Development
 - Conceptual design \rightarrow Basic design \rightarrow Detailed design
 - Experimental reactor \rightarrow Prototype reactor \rightarrow Demonstration reactor
 - Utility + Licensing
 - Keeping the national infrastructure and manpower!
- SMR Development
 - ~ Basic design \rightarrow Licensing, Establishment of Corporation, Investment
 - Design finish along the licensing processes
 - FOAKE (First Of A Kind Engineering)
 - Developing!
- Development Paradigm Shift
 - Investment at the early stage of research
 - \square Premise for the investment \rightarrow Foundry

New Trends due to SMRs

- Leadership: Government \rightarrow Private
- Importance: Development \rightarrow Investment
 - Investor management \rightarrow promotion and public relation
- Research: Infrastructure \rightarrow Development
 - Heavy industry, Secure investment
- Market: Domestic \rightarrow International
 - International recognition → promotion and public relation (international)
- Regulation: Domestic \rightarrow International leadership
- Current situation: Spring and Autumn Warring State (春秋戰國)
 - Investors \rightarrow SMR Investment Company \rightarrow Management capability
 - $COP \rightarrow Government supports$
- \square All the issue tackling \rightarrow Leadership!

Future Shapes of Korean Nuclear

- Domestic
 - Climate change and Carbon neutral activities
 - Enhancement of energy security
 - Sustainable economic development
 - Nuclear portion increase (both electricity and hydrogen)
- International
 - Carbon free energy source
 - Replacements of the existing NPPs
 - Expansion of nuclear applications
 - Proper worldwide energy mix
 - Sustainable economic development
 - Nuclear exports, SMR development

Missions

- Energy mix & Climate change
 - Nuclear involvements to the Energy planning (Load duration & Screening)
- Tackling Green-Washing
 - Active PA
 - $rightarrow RE100 \rightarrow CF100$
- Technical innovations
 - SMR's, Nuclear Hydrogen, ATF etc.
- High level wastes
 - Solve! (not Talk)
- International collaboration
 - Nuclear phase-out policy, PA activities
 - Common good

